专利摘要:
同じシャフト(70)に結合される、コンプレッサ部(55)と、タービン部(60)と、電気機械(65)とを有するターボチャージャー装置(50)。コンプレッサ部(55)は、タービン部(60)及び電気機械(65)と同じシャフト(70)に結合される、第一コンプレッサステージ(56)及び第二コンプレッサステージ(57)を有する。
公开号:JP2011509374A
申请号:JP2010541807
申请日:2009-01-07
公开日:2011-03-24
发明作者:アルッキオ,アンテロ;ラルヨーヤ,ヤッコ
申请人:ワルトシラ フィンランド オサケユキチュア;
IPC主号:F02B37-10
专利说明:

[0001] 本発明は、請求項1の前文に従ったピストンエンジン用ターボチャージャー装置に関する。]
背景技術

[0002] ピストンエンジンを過給すること自体は、従来技術により公知であり、多くの有利点をもたらす。特に、排気ガスチャージ、すなわちターボチャージは、それ自体、どのみち廃棄されることとなる排気ガスにおけるエネルギーを利用するため、過給を実行するのに極めて有利な方法である。ターボチャージャーにおいて、そのエンジンの排気ガス流内に適応させられるタービン部は、そのエンジンへの吸気流内に適応させられるコンプレッサ部を駆動するよう構成される。そのタービン部及びそのコンプレッサ部は、典型的には、共通のシャフトの両端に適応させられ、そのシャフトは、そのターボチャージャーの本体におけるベアリング群に軸方向及び半径方向に取り付けられる。]
[0003] ターボチャージャーにおけるベアリングシステムには高い要求が課されている。スーパーチャージャーのロータは、動作中、毎分数万回転で回転し、それらベアリング群は、高温にさらされる。排気ガス流は、そのタービン部のタービンホイールを介してそのシャフトに軸力を伝え、それら軸力は、軸方向ベアリング群によって相殺される必要がある。その一方で、そのタービンホイールとそのコンプレッサインペラとそれらの筐体のそれぞれとの間の半径方向の隙間は極めて小さく、半径方向ベアリング群に対し高い要求を課すこととなる。]
[0004] 米国特許出願公開第2005/0198956号明細書は、磁気ベアリングによって実現されるターボチャージャー用ベアリングシステムを開示し、そのシステムにおいて、半径方向ベアリング群は、受動永久磁石群として具現され、軸方向ベアリング群は、能動磁気ベアリングとして具現される。そのシャフトの軸方向位置は、センサを用いて決定され、そのセンサの信号は、その能動ベアリングの電磁石をガイドし、それによって軸方向偏位が補正される。]
[0005] ターボチャージャーの動作原理に起因して、(例えば、低負荷及び低運転速度での)排気ガスの温度及び質量流量が低いエンジン運転状態では、そのターボチャージャーにおけるコンプレッサによっては、そのエンジンの吸気システムのための所望のブースト圧を生成できないことがしばしば発生する。その一方で、そのターボチャージャーの動作は、その質量によっても影響される。そのエンジン負荷が過渡状態にあるときのそのターボチャージャーの動作は、そのエンジン負荷の変化に十分な速度で常に追従できるというものではなく、そのターボチャージャーの反応は一定の遅れを有し、それはまた、そのエンジンの反応性をそれ相応に遅らせることとなる。]
[0006] 例えば、そのターボチャージャーのシャフトに結合される補助的な電動モータを用いることに加えて、別個の電動の追加的なコンプレッサをそのターボチャージャーのコンプレッサに直列に接続することによって、ターボチャージャーの動作に関する上述の問題を解決するための提案がなされている。]
[0007] 米国特許第6390789号明細書は、電動モータ駆動のターボコンプレッサ装置を開示し、その電動モータ及びそのベアリング群は、そのコンプレッサステージの圧縮側からその電動モータへ導かれ、そして再びそのコンプレッサステージの吸い込み側に戻るガス流によって冷却される。この配置によってもたらされるその冷却は、不十分なものである。]
[0008] 独国特許出願公開第102005056797号明細書は、2ステージのコンプレッサ及びタービンの双方を有する2ステージのターボチャージャー装置を開示する。タービン・コンプレッサのペアは双方とも、各自のシャフトに結合され、それらシャフト群は、互いの内部に配置される。それらタービン群は、それら入れ子になったシャフト群の一端に配置され、それらコンプレッサ群は、その他端に配置される。この種の解決策は、特に、二つの別個のタービン・コンプレッサのペアにおけるベアリングシステムの点で、比較的複雑なものとなる。]
[0009] 独国特許出願公開第102005056797号明細書は、概して、組み合わされるモータ・発電機が、シャフトにエネルギーをもたらすよう、或いは、シャフトからエネルギーを取り出すよう、それらシャフトとともに適応させられ得ることを示す。特に内側のタービン・コンプレッサのペアにそのようなモータ・発電機を提供することは、技術的に極めて困難である。また、その解決策は、構造及び動作の双方の点で、複雑である。]
[0010] 公表文献であるModern Engine Technology from A to Z 2007, SAE, p956-957は、コンプレッサとタービンとを接続するシャフトに電動モータが配置されたターボチャージャーを示す。ここで開示される解決策を用いてそのコンプレッサのための十分な圧力比を準備することは、効率の低下をもたらし、それ故に問題がある。]
[0011] 上述の複数の解決策はそれ自体有利ではあるが、ターボチャージャーの動作及びエンジンの動作を改善する必要性が最近になって生じている。電動モータを使用すること、及び、それをターボチャージャーに適応させることは、例えば、その必要とされる比較的高い回転速度のために、極めて困難なことである。そのアセンブリの他の部分の全寿命にわたって信頼性高く動作させるために、この種の電動モータの構造及び動作は、そのターボチャージャーの動作及び構造によって課されるその電動モータに対する要求を満たすようにする必要がある。]
[0012] 米国特許出願公開第2005/0198956号明細書
米国特許第6390789号明細書
独国特許出願公開第102005056797号明細書]
先行技術

[0013] Modern Engine Technology from A to Z 2007,SAE, p956-957]
発明が解決しようとする課題

[0014] それ故に、本発明の目的は、特に、コンプレッサ部、タービン部、及び電気機械を有するターボチャージャー装置であって、そのコンプレッサ部が第一コンプレッサステージ及び第二コンプレッサステージを有し、その動作が、エンジンに接続された場合、様々な動作条件においてそのエンジンのより良好な全般的動作をもたらすといったターボチャージャー装置を提供することによって、その技術水準を従来技術のものから引き上げることである。]
課題を解決するための手段

[0015] 本発明に従ったターボチャージャー装置は、主に、同じシャフトに結合される、そのコンプレッサ部、そのタービン部、及びその電気機械によって特徴付けられる。]
[0016] このように、そのコンプレッサ部は、高い効率で動作し、そのエンジン及びそのスーパーチャージャー装置の動作は、様々な動作条件においてより大きな可制御性を有することとなる。2ステージのコンプレッサを用いた過給を実現させることによって、1ステージのコンプレッサを用いたときよりも顕著に高いブースト圧を実現することもまた可能である。また、そのターボチャージャーの効率は、2ステージの過給を通じて顕著に向上させられ、更に、その2ステージのコンプレッサ部の動作は、具体的には、その電気機械を用いることによって、例えばそのエンジンの過渡状態において、高い応答性を有するものとなり得る。]
[0017] 好適には、そのコンプレッサ部、そのタービン部、及びその電気機械は、そのコンプレッサ部が、軸方向にその電気機械とそのタービン部との間に適応させられるように、そのシャフト上に配置される。このようにして、ガスがそのコンプレッサ部を通って流れ、また、その電気機械に少なくとも一つの流路を提供することにより、且つ、そのコンプレッサ部のための吸気がその電気機械におけるその少なくとも一つのガス流路を流れるべく用意されるようにその電気機械におけるそのガス流路と連通してそのコンプレッサ部の吸気管を配置することにより、その電動モータの冷却が効率的に且つコンパクトに用意され得る。]
[0018] その電気機械は、そのエンジンの通常運転の際に電気エネルギーを生成することによってそのタービン部の動作を遅らせるよう配置される。また、その電気機械は、そのタービンがそのコンプレッサ部のための十分な力を提供できるようにするための排気ガスの量が十分でないエンジンの運転状態において、そのコンプレッサ部の動作を支援するよう配置される。]
[0019] 好適には、そのガス流路における第一コンプレッサステージと第二コンプレッサステージとの間にインタークーラが配置され、それにより、それらコンプレッサステージの双方の動作が効率的となり、また、そのコンプレッサの出力需要が顕著に低減される。]
[0020] その電気機械は、永久磁石ロータを備え、それにより、その動作は、そのサイズに関し効率的なものとなり、また、そのロータは、配線を必要としない。また、永久磁石ロータを用いることによって、そのロータの熱損失は小さいものとなり、それにより、その空隙を通じて導かれる空気の量は少ないものとなり、更には、冷却における圧力損失を低減させる。]
[0021] 本発明の実施例に従って、そのターボチャージャー装置におけるコンプレッサステージ群のコンプレッサインペラ群のガスシーリングは、それらコンプレッサステージ群の軸力の合計が、そのタービン部がそのシャフトに与える軸力の90〜110%となるように、用意される。これによって、そのコンプレッサ部、そのタービン部、及びその電気機械で形成されるアセンブリは、処理技術的手段を用いることによって、それら軸力に関して平衡が保たれ、その結果、運転中のその軸方向ベアリングの負荷及び摩耗が極小化される。]
[0022] そのガスシーリングは、一実施例によると、その第一コンプレッサステージ及びその第二コンプレッサステージが、共通シャフト上に適応させられるコンプレッサインペラを有し、また、その第一コンプレッサインペラのシーリングがそのシャフトとその本体部との間に配置され、且つ、その第二コンプレッサインペラのシーリングがそのコンプレッサインペラとその本体部との間に配置されるように、実現される。]
[0023] 本発明の実施例によると、そのシャフトは、ベアリングを冷却するためにそのコンプレッサ部によって加圧されたガスをそのベアリングまで運ぶための、そのコンプレッサ部からそのシャフトの一端にあるベアリング群まで延びる軸方向流路を有する。]
[0024] 本発明の別の実施例によると、その電気機械は、少なくとも一つのガス流路を備え、また、そのコンプレッサ部の吸気管は、そのコンプレッサ部のための吸気がその電気機械における少なくとも一つのガス流路を通過すべく用意されるように、その電気機械におけるガス流路に連通して配置される。その電気機械におけるガス流路群は、その電気機械におけるロータとステータ部との間の空隙、並びに、そのステータ部及び/又はそのステータ部に配置されるその本体部のためのガス流路群を含む。好適には、その電気機械におけるそのステータ部及び/又はその本体部のガス流路群は、冷却のための必要十分な量の空気がその電気機械のロータとステータ部との間の空隙を通過するように、その空隙に関して寸法取りされ、それにより、その冷却における圧力損失は、極小化され得る。有利的には、そのステータ部におけるガス流路群の断面積は、その電気機械におけるガス流路群の総断面積の95〜98%である。]
[0025] 本発明の追加的な特性群は、添付の特許請求の範囲において開示される。]
[0026] 本発明に従ったターボチャージャー装置によって、いくつかの利点が実現される。その装置によって、例えば、そのエンジンの負荷運搬能力、中間的な負荷又は低回転速度でのその動作、及びその効率を改善することが可能となる。また、本発明を用いることによって、排出物が顕著に低減され得る。更に、本発明に従った装置は、そのエンジンのより良好な始動性を可能にする。]
[0027] 以下では、本発明及びその動作が添付図面を参照して説明される。]
図面の簡単な説明

[0028] 燃焼エンジンに接続される、本発明の実施例に従ったターボチャージャー装置を示す。
本発明の別の実施例に従ったターボチャージャー装置を示す。
図2のIII−III断面図を示す。
ターボチャージャー装置の軸力を相殺するための原理を示す。
本発明の実施例に従った永久磁石ロータの構造を示す。] 図2
実施例

[0029] 図1は、ターボチャージャー付きのピストンエンジン10を示す。そのエンジンは、複数のシリンダ群15を有し、それらは、例えば4ストロークエンジンの場合、バルブ群(図示せず。)によって制御されながら、燃焼ガスコレクタ20及び排気ガスコレクタ25に連通される。そのエンジンは、2ステージのコンプレッサ部55と、タービン部60と電気機械65とを含むピストンエンジン用ターボチャージャー装置50を有する。なお、2ステージのコンプレッサ部55、タービン部60、及び電気機械65の全ては、同じシャフト70に結合される。そのシャフトは、複数の部品で構成されていてもよく、単一の部品で構成されていてもよい。そのエンジンが動作している間、排気ガスは、それらシリンダ群から排気ガスコレクタを通じてターボチャージャー装置50のタービン部60に流れ、そこで、その排気ガスは、仕事を行う。この仕事は、本発明に従って、コンプレッサ部55及び/又は電気機械65によって利用される。また、コンプレッサ部55及び電気機械65は、そのコンプレッサ部の吸気管75が電気機械65の冷却通路群80と連通して配置され、コンプレッサ部55のための吸気が電気機械65の通路群80を通過するよう用意されるといった態様で、統合される。このようにして、そのエンジンにおける燃焼に加わるガス(典型的には、燃焼用空気である。)は、最初にその電気機械の通路群80を介して導かれ、そこから更に、その燃焼用ガスの圧力が高められるところであるコンプレッサ部55に導かれる。] 図1
[0030] 図1でその実施例が図示される、本発明に従ったスーパーチャージャー装置50によって、複数の有意な有利点が、エンジン10の様々な動作条件において実現される。その電気機械は、そのターボチャージャー装置のパワーバランスに応じて、発電機としてもモータとしても動作する。排気ガスの量がかなり少ない動作条件において、電気機械65は、コンプレッサ部55のために仕事を行い、その結果、この条件においてそのタービン部から受ける力によって可能となるものよりも高いブースト圧を維持するように、使用され得る。そして、その電気機械は、そのコンプレッサ部の回転を支援する電動モータとして機能する。] 図1
[0031] そのエンジンからの排気ガスの量、及びそれが包含するエネルギーが、そのコンプレッサ部が利用できるものよりも多く、或いは、燃焼用空気を過給するために必要とするものより多いような条件において、電気機械65は、そのタービンを遅らせるために(同時にそのコンプレッサを遅らせるためでもある。それらは、同じシャフト上に配置されているからである。)、またその際に電気エネルギーを生成するために、使用され得る。この場合、その電気機械は、発電機として作用する。これは、そのエンジンの全ての排気ガス、すなわち排気ガス流の全体が常にタービン部60を通じて導かれ、それ故に、その装置が、そのタービンの出力を制限するために廃棄ゲート又は調節可能な吸込ベーン群のような他の装置を必要としないということを、実現可能なものとする。このようにして、本発明に従った装置は、そのアセンブリの回転速度がその電気機械による遅延効果を調節することによって調整され得るので、そのスーパーチャージャー装置のブースト圧又は回転速度が過度に上昇するといったリスクもなく、そのタービン部の寸法取りが極めて効率的となるのを可能にする。好適には、タービン部60の設計出力は、そのコンプレッサ部の設計出力よりも10〜30%だけ高く、それによって、その電気機械の出力は、出力供給状態及び出力取り出し状態の双方において効率的に利用される。]
[0032] 本発明の実施例に従って、そのエンジンを始動させる方法は、そのエンジンの前にターボチャージャー装置50の電気機械65が始動させられ、それによって、そのスーパーチャージャー装置のコンプレッサ部が、原則的にその始動の瞬間に既に、そのエンジンシリンダ群のための上昇させられた圧力レベルを生成するという段階を含む。このようにして、そのエンジンは、より迅速に始動し、その始動の際の燃焼過程における乱れを低減させながら、その通常運転により速く達する。]
[0033] また、その装置は、そのターボチャージャー装置専用のユニット、又は、そのエンジンにおける集中型制御システムの一部の何れかである制御ユニット85を有する。その制御ユニットは、少なくとも、電気機械65の動作をガイドするよう用意される。]
[0034] また、本発明は、本発明の実施例に従って、同じシャフト70に結合された、コンプレッサ部55、タービン部60、及び電気機械65を含むターボチャージャー装置50においてターボチャージャー付きエンジンを高負荷(最大能力の60%以上である。)で運転する方法に関し、その方法において、そのエンジンにおける実質的に全ての排気ガス流は、
排気ガスにおけるエネルギーが機械的仕事に変換されるところであるターボチャージャー装置のタービン部に導かれ、その機械的仕事は、そのターボチャージャー装置のコンプレッサ部を運転するために、或いは、その電気機械によって電気を生成するために利用される。更に、その方法において、そのエンジンの燃焼用空気は、その燃焼用空気がコンプレッサ部55に運ばれる前に、電気機械65からの熱をその燃焼用空気に伝えることによって加熱される。]
[0035] 実施例によると、そのターボチャージャー装置は、そのシャフトの回転速度を測定する測定装置127を更に有する。この場合、そのターボチャージャー装置は、好適には、そのターボチャージャー装置の回転速度を所定の最小回転速度と所定の最大回転速度との間の範囲内に維持するようにエネルギーがその電気機械に供給されるか、或いは、エネルギーがその電気機械から取り出されるといった態様で、回転速度の測定に基づいてその電気機械の動作が制御されるように、運転される。]
[0036] 実施例によると、そのターボチャージャー装置はまた、コンプレッサ部55によって生成される圧力を測定するための圧力ゲージ90を有する。この場合、そのターボチャージャー装置は、好適には、そのターボチャージャー装置によって生成される圧力を所定の最小圧と所定の最大圧との間の範囲内に維持するようにエネルギーがその電気機械に供給されるか、或いは、エネルギーがその電気機械から取り出されるといった態様で、圧力測定に基づいて電気機械65の動作が制御されるように、運転される。]
[0037] 図2は、図1で示される原理を用いることによって燃焼エンジンに接続され得る、本発明に従ったターボチャージャー装置50の実施例をより詳細に示す。このようにして、極めてコンパクトなアセンブリが提供され、それによって、そのエンジンの動作は、改善され得る。そのターボチャージャー装置は、そのエンジンの動作条件によって決定される必要性に応じて極めて柔軟に動作し、それは、例えば、以前は問題であると考えられていた、そのエンジンの低回転速度域のためのそのターボチャージャーの拡大の必要性を有利的なものとする。図3で示されるターボチャージャー装置50は、全てが互いに接続される、その電気機械の本体部165、そのコンプレッサ部の本体部155、及びそのタービン部の本体部160を含む本体100であり、また、そのコンプレッサ部の本体部155が、その電気機械の本体部とそのタービン部の本体部との間に適応させられるところの本体100を有する。] 図1 図2 図3
[0038] ここでは、そのタービン部は、軸流タービンであり、タービンホイール135と、ガスの流れ方向においてそれに先行する一組の吸込ベーン群131とを有する。図3に従った実施例におけるそのタービン部の後側には、ディフューザ132が配置され、そのフランジには、そのエンジンの燃焼排ガス通路が取り付けられ得る。そのタービン部におけるガスの流れは、矢印群によって示される。] 図3
[0039] そのコンプレッサ部は、第一ステージ56及び第二ステージ57の2ステージの半径流コンプレッサを有する。第一ステージ56及び第二ステージ57は、その第一ステージの圧縮側からその第二ステージの吸い込み側に配置される流路140が存在することとなるように互いに接続される。流路140は、インタークーラ145を備え、それを用いて、その第一ステージからその第二ステージに流れる燃焼用空気は、それが第二ステージ57に供給される前に、冷却され得る。それらコンプレッサのステージの双方は、それぞれ共通シャフト70上に適応させられ、且つ、それぞれその本体内に配置される第一ステージのコンプレッサ筐体180及び第二ステージのコンプレッサ筐体185の内側に適応させられるコンプレッサインペラ170、175を有する。そのコンプレッサ部におけるガスの流れは、矢印群によって示される。]
[0040] 図2及び図3を参照すると、ターボチャージャー装置50の電気機械65は、シャフト70とともに配置される永久磁石ロータ190と、それを取り囲むステータ部200とを有する。そのステータ部は、その電気機械の本体部165に支持され、また、電気エネルギーをその電気機械に伝えるための、或いは、電気エネルギーをその電気機械からネットワークに伝えるための電気的接続202を有する。ステータ部200は、その軸方向において第一端205から第二端210に延びるガス流路群215を有し、それら流路群はまた、その電気機械のためのクーラント通路群としての機能も果たす。この実施例では、そのステータ部の第一ガス流路群215は、基本的に環状の流路を形成すべく、そのステータ部のコイル部201の外側に半径方向に配置され、それによって、その電気機械におけるステータ部200のコイル部201は、そのステータ部及び/又はその本体部における流路群215の内側に半径方向に配置される。] 図2 図3
[0041] そのステータ部は、半径方向に延びる支持部203を用いて外側セクション202に支持される。そのステータとそのロータとの間に配置された空隙216は、第二ガス流路としての機能を果たす。それら流路群は、同時に、電気機械65のための冷却通路群、及び、そのコンプレッサ部のための吸気通路群を形成する。好適には、原則的には全ての、或いは、少なくともほとんどの、そのコンプレッサ部の吸気は、その電気機械におけるガス流路群215、216を通過するよう配置される。このように、実質的にはそのエンジンの燃焼用空気からなるそのガス流の量は、常に、その電気機械を冷却するのに十分なものであり、一方で、その冷却のための正確な温度である。電気機械65におけるそのステータ部及び/又はその本体部のガス流路215は、その電気機械におけるロータとステータ部との間の空隙に関して寸法取りされ、冷却のための空気の必要十分な量がその空隙を通過しそれによってその冷却における圧力損失が極小化され得るようにする。]
[0042] そのステータ部、及び/又はステータ部200に配置されるその本体部におけるガス流路215の流れ断面は、電気機械65における流路群の流れ断面全体の90%を超え、ステータ部200とロータ190との間の空隙216の流れ断面は、電気機械65における流路群の流れ断面全体の10%未満である。それ故に、ガス流全体の10%未満が、ステータ部200とロータ190との間の空隙216を通過するよう構成される。そのステータ部におけるガス流路群の断面積は、このことに基づいて決定される。それは、好適には、電気機械65におけるガス流路群の総断面積の95〜98%であり、それにより、ガス流は、その機械が動作している間、常に、ステータ部200とロータ190との間の空隙216を通過し得る。このことは、ロータ190の冷却を確かなものとし、また一方で、その空隙がその電気機械の磁気的動作における過度の損失を引き起こすことがないようにする。その電気機械におけるガスの流れは、矢印によって示される。]
[0043] 図2に従ったターボチャージャー装置のシャフト70は、そのシャフトの第一端に配置されるベアリング125群と、その第二端に配置されるベアリング群130とによってその本体上に回転可能に支持される。シャフト70は、複数の部品で構成される原則的に剛体のシャフトであるが、一つの部品で作られるシャフトであってもよい。その第一端にあるベアリング群125は、電気機械65の本体部165上に支持され、その第二端にあるベアリング群130は、そのタービン部の本体部160上に支持される。その電気機械の本体部165は、そのコンプレッサ部の吸気の、その電気機械におけるステータ部の第一端205の側部への流れを可能にするために、その本体部のシェル内或いはその端部に配置される開口群220を有する。この実施例では、それら開口群は、半径方向に開くが、別の種類の解決策も実現可能である。図2に従った実施例では、その第一端にあるベアリング群は、半径方向ベアリングシステム125.1及び軸方向ベアリングシステム125.2の双方を有する。潤滑油の出入り口225は、これらのシステム群のために用意される。その第一端にあるそれらベアリング群の筐体構造は、そのステータ部の第一端205に対向するガス流空間によって制限され、それにより、そのコンプレッサ部の吸気は、その第一端にあるそれらベアリング群の筐体構造を冷却するための媒体としても機能する。実際には、その半径方向ベアリングシステムは、好適には、スライドベアリングシステムである。] 図2
[0044] シャフト70の第二端(そのタービン部に対向する端部のことをいう。)にあるベアリング群130は、この実施例では、半径方向ベアリングシステムのみを有する。その第二端にあるベアリング群130は、この実施例ではタービン部60の本体部160内に適応させられるベアリング筐体を有するが、そのシャフトの第二端にあるベアリング群の位置は、別の適用では、タービン部60の内部にあってもよく、それにより、そのベアリングの温度に対する排気ガスの影響は、その図で示される状態におけるよりも小さいものとなる。潤滑油の出入り口230は、その本体部とともに、それらベアリング群のために用意される。そのタービン部の温度は、それを通過して流れる高温の排気ガスのために比較的高く、そのため、そのシャフトの第二端にあるベアリング群とともに冷却装置が用意される。その冷却装置は、シャフト70の端部からその第二端にあるベアリング群を過ぎて延びる少なくとも一つの軸方向通路242であり、シャフト70の表面から軸方向通路242へ延びる少なくとも一つの半径方向通路240がその一端にある軸方向通路242を有する。軸方向通路242は、好適には、第二コンプレッサステージ57の吸い込み側における、そのガス流内のインタークーラ145の後ろの点まで及ぶ。この実施例では、半径方向通路群240は、それぞれ、第一コンプレッサステージ56のコンプレッサインペラ170と第二コンプレッサステージ57のコンプレッサインペラ175との間の領域において、シャフト70に配置される。動作中、第一コンプレッサステージ56の後、既に上昇させられた圧力にあり、且つそのインタークーラによって冷却されたガス(空気)は、通路群240、242に沿って、そのシャフトの第二端にあるベアリング群130を通過して、そのシャフトの内側を、そのベアリングの温度を適度に低く維持しながら流れる。通路242から、そのガスは、そのタービン部のディフューザ内に放出され、そこから、タービンホイール135の隙間を通ってその排気ガス通路内に放出される。]
[0045] また、通路群240、242は、シャフト70の温度を下げ且つその直径を減少させるためにその通路を通じて低温の流体をシャフト70内に導くことによって、そのタービンホイール及びその第二コンプレッサステージのコンプレッサインペラとの分離に利用され、一方で、そのシャフトとそのタービンホイール又はその第二コンプレッサステージのコンプレッサインペラとの間のシュリンクフィットは、そのタービンホイール又はコンプレッサインペラを加熱することによって分解される。]
[0046] それらスラストベアリング群(すなわち軸方向ベアリング群である。)に掛かる負荷を低減させるために、通常の動作条件においてそのコンプレッサインペラ及びそのタービンによって生成される軸力は、本発明の実施例に従って、相殺され或いは少なくとも極小化される。シーリング群を配置する方法は、図4で示される。これは、以下のように、2ステージのコンプレッサ部55におけるコンプレッサインペラ群170、175のシャフトシーリング群によってもたらされる。シーリング群250は、一定の方法で、それらコンプレッサインペラ群の後ろに、すなわち、半径流コンプレッサではブレード群に関してそのインペラの反対側に配置される。それらシーリング群は、ラビリンスシール群で構成される。図4において、連続線の矢印401、402は、そのスラストベアリングを押す力を示し、破線の矢印403、404、405は、そのスラストベアリングを引っ張る力を示す。力401、402、403、及び404は、そのコンプレッサ部によって生成され、力405は、そのタービン部によって生成される。点線の矢印406は、通常の動作条件において、そのスラストベアリングに掛かる負荷を示す。そのコンプレッサステージ群における衝撃の合力は、本発明の実施例によると、±10%の精度で、タービン部60がシャフト70に掛ける軸力405と一致するように調節され、それにより、通常の動作条件において、そのスラストベアリングに掛かる負荷は、そのタービンがそのシャフトに掛ける軸力の約±10%となり、それ故に、それらコンプレッサステージ群における衝撃の合力は、タービン部60がシャフト70に掛ける軸力405の90〜110%となる。従って、通常状態におけるその軸力は比較的小さいものとなり、そのことは、結果としてそのスラストベアリングに掛かる負荷も比較的小さくこととなり、それにより、その寿命が長くなることとなる。この種のほとんど平衡した状態は、その第二コンプレッサステージのシーリング250がシャフト70と本体部155との間、及び、第二コンプレッサインペラ175と本体部155との間に配置されるようにして実現される。このことは、それらコンプレッサインペラ群の後ろに、圧力、及び/又は、そこで支配的な力であり、その力平衡が実現され得るそのターボチャージャー装置における他の構成要素に掛けられる力に対する表面積をもたらす。] 図4
[0047] 図5は、本発明に従ったターボチャージャー装置における電気機械のロータ190の有利的な構造を示す。その電気機械は、永久磁石機械であり、それ故に、そのロータは、複数の永久磁石群192を有する。ロータ190は、円筒ケージ191を有する。ケージ191は、その周囲に縦方向溝群193を備え、それら溝群には、永久磁石群194が配置される。そのケージの材料は、好適には、交番磁界から更には誘導渦電流からそれら永久磁石群を保護するアルミニウムである。その結果、そのロータにおける出力損失は、より小さいものとなる。また、そのケージは、それによってその電気機械のロータ190がそのターボチャージャー装置のシャフト70に結合されることとなる構成要素でもある。そのケージのジョイントは、好適には、シュリンクフィット技術を利用することによってシャフト70の周りに配置される。] 図5
[0048] 高い回転速度により、永久磁石群194及びケージ191は、遠心力によって変位させられる傾向にある。それら構成要素群を適切な位置で維持するために、少なくとも一つのストラップ195が、ケージ191及び永久磁石群194を取り囲むように配置される。そのストラップは、一部品で構成されるストラップであってもよく、複数の個別のストラップ群で構成されてもよい。
本発明に係る極めて有利的な実施例のうちのほんの僅かが説明されたのみである点に留意すべきである。従って、本発明が、上述の実施例群に限定されることはなく、添付の請求項の枠組み内にある様々なピストンエンジンとともに多くの方法に適用され得ることは、明らかである。本発明は、液体燃料及び/又は気体燃料によって駆動される4ストロークエンジン及び2ストロークエンジンの双方に適用され得る。それら様々な実施例群とともに説明された特徴群は、他の実施例群とともに用いられてもよく、且つ/或いは、説明された特徴群の様々な組み合わせは、必要であれば、また、その組み合わせに対する技術的な実行可能性が存在するのであれば、本発明の基本概念の枠組み内で実現され得るものである。]
权利要求:

請求項1
コンプレッサ部、タービン部、及び電気機械を含み、該コンプレッサ部が、第一コンプレッサステージ及び第二コンプレッサステージを含む、ターボチャージャー装置であって、前記コンプレッサ部、前記タービン部、及び前記電気機械は、共通のシャフトに結合される、ことを特徴とするターボチャージャー装置。
請求項2
前記コンプレッサ部、前記タービン部、及び前記電気機械は、前記コンプレッサ部が軸方向において前記電気機械と前記タービン部との間となるよう、前記シャフト上に配置される、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項3
前記電気機械は、電気エネルギーを生成することによって、前記タービン部の動作を遅らせるよう配置される、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項4
前記電気機械は、前記コンプレッサ部の動作を支援するよう配置される、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項5
ガス流路における前記第一コンプレッサステージと前記第二コンプレッサステージとの間にインタークーラが配置される、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項6
前記電気機械は、永久磁石ロータを備える、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項7
前記コンプレッサステージ群におけるコンプレッサインペラ群のシーリング群は、前記コンプレッサステージ群における衝撃の合力が、前記タービン部が前記シャフトに及ぼす軸力の90〜110%となるよう配置される、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項8
前記第一コンプレッサステージ及び前記第二コンプレッサステージのそれぞれは、前記共通のシャフト上に構成されるコンプレッサインペラを含み、第一コンプレッサインペラのシーリングは、前記シャフトと本体部との間に配置され、第二コンプレッサインペラのシーリングは、該第二コンプレッサインペラと前記本体部との間に配置される、ことを特徴とする請求項7に記載のターボチャージャー装置。
請求項9
前記シャフトは、ベアリングを冷却するために、前記コンプレッサ部によって加圧されたガスをベアリングまで運ぶための、前記コンプレッサ部から前記シャフトの一端にあるベアリング群に及ぶ軸方向流路を含む、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項10
前記シャフトの半径方向ベアリング群は、第一端で、前記電気機械の本体部によって支持され、第二端で、前記タービン部の本体部によって支持される、ことを特徴とする請求項1に記載のターボチャージャー装置。
請求項11
前記電気機械は、少なくとも一つのガス流路を備え、前記コンプレッサ部の吸気管は、前記コンプレッサ部のための吸気が前記電気機械における前記少なくとも一つのガス流路を通過すべく用意されるよう、前記電気機械における前記ガス流路と連通して配置される、ことを特徴とする請求項1乃至10の何れか一項に記載のターボチャージャー装置。
請求項12
前記電気機械における前記ガス流路群は、前記電気機械におけるロータとステータ部との間の空隙、並びに、該ステータ部及び/又は該ステータ部に配置されるその本体部のためのガス流路群を含む、ことを特徴とする請求項11に記載のターボチャージャー装置。
請求項13
前記電気機械における前記ステータ部及び/又はその本体部のガス流路群は、冷却のための必要十分な量の空気が前記電気機械における前記ロータと前記ステータ部との間の前記空隙を通過するよう、前記空隙に関して寸法取りされ、それによって前記冷却における圧力損失が極小化される、ことを特徴とする請求項11に記載のターボチャージャー装置。
請求項14
前記ステータ部におけるガス流路群の断面積は、前記電気機械におけるガス流路群の総断面積の95〜98%である、ことを特徴とする請求項11に記載のターボチャージャー装置。
类似技术:
公开号 | 公开日 | 专利标题
CN106687666B|2019-07-09|具有可变出口导向轮叶的轴流离心式压缩机
US9879689B2|2018-01-30|Turbocharger rotating assembly
EP2447507B1|2019-03-20|Turbomachine cooling arrangement
US7412831B2|2008-08-19|Integral cooling system for rotary engine
US6250061B1|2001-06-26|Compressor system and methods for reducing cooling airflow
JP4537636B2|2010-09-01|一体型の排気ガス再循環ポンプを組み込んだターボチャージャー
CN104213974B|2017-05-17|涡轮增压器组件
EP0021738B1|1983-12-21|Floating ring bearing structure and turbocharger employing same
EP2110531B1|2016-11-30|Exhaust gas turbocharger
EP3168429B1|2018-03-07|Turbine nozzle cartridge for use with a turbocharger core
EP0014778B1|1983-05-18|Zweistüfiges Abgasturboladeraggregat
US7367190B2|2008-05-06|Supercharger with electric motor
US4490622A|1984-12-25|Turbocharger and adaptations thereof
CA2464414C|2010-05-11|High pressure turbine blade cooling scoop
US5376827A|1994-12-27|Integrated turbine-generator
JP4054383B2|2008-02-27|一体型ポンプ、制御弁、およびミキサを組み込んだターボ過給機を利用する排気ガス再循環システム
EP2607633B1|2017-11-29|Engine assembly and waste heat recovery system
EP1723326B1|2010-11-10|Verdichter, brennkraftmaschine mit einem verdichter und verfahren zum betrieb einer brennkraftmaschine
JP5777796B2|2015-09-09|電動機付き過給機および電動機付き過給機を備えるエンジン装置
KR101116455B1|2012-03-08|과급 장치
WO2013011840A1|2013-01-24|電動過給装置及び多段過給システム
DE60122348T2|2007-08-16|Rotor-und lageranordnung für einen elektrisch unterstützten turbolader
US6190123B1|2001-02-20|Centrifugal compressor
US20150345373A1|2015-12-03|Compressing device with thermal protection
EP1749991B1|2011-06-15|Supercharger with electric motor
同族专利:
公开号 | 公开日
FI122036B|2011-07-29|
EP2229515B1|2015-09-16|
KR101536795B1|2015-07-14|
KR20100102687A|2010-09-24|
FI20085019A|2009-07-11|
JP5425097B2|2014-02-26|
FI20085019A0|2008-01-10|
CN101910580A|2010-12-08|
FI122036B1||
FI20085019D0||
EP2229515A2|2010-09-22|
WO2009087273A3|2010-03-25|
WO2009087273A2|2009-07-16|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH09506406A|1993-12-08|1997-06-24|スカニアシーブイアクチボラグ|内燃機関における装置と、内燃機関を始動する方法|
JPH11280502A|1998-03-27|1999-10-12|Isuzu Ceramics Res Inst Co Ltd|ターボチャージャを備えたミラーサイクル型ガスエンジン|
US6390789B1|1999-07-16|2002-05-21|Sulzer Turbo Ag|Cooling means for the motor of a turbocompressor|
JP2002155751A|2000-09-21|2002-05-31|Caterpillar Inc|排気ガス再循環を備えるターボ過給機|
US20020041813A1|2000-10-11|2002-04-11|Peter Fledersbacher|Exhaust gas turbocharger for an internal combustion engine and a method for operating an exhaust gas turbocharger|
JP2006500502A|2002-09-20|2006-01-05|モーディーン・マニュファクチャリング・カンパニーModineManufacturingCompany|燃焼空気過給機用の内臓型の半径流インタークーラー|
JP2006333660A|2005-05-27|2006-12-07|Toyota Motor Corp|モータおよびモータを用いたターボチャージャ|
JP2007159277A|2005-12-06|2007-06-21|Nishishiba Electric Co Ltd|高速回転機の冷却構造|JP2013019355A|2011-07-12|2013-01-31|Mitsubishi Heavy Ind Ltd|過給機用消音器、これを備えた過給機およびハイブリッド過給機|
WO2015125910A1|2014-02-24|2015-08-27|三菱重工業株式会社|過給機及びモータ冷却方法|
WO2016098604A1|2014-12-19|2016-06-23|株式会社マーレ フィルターシステムズ|ターボチャージャ|
EP3244033A1|2016-05-11|2017-11-15|MAHLE Filter Systems Japan Corporation|Turbocharger|US5605045A|1995-09-18|1997-02-25|Turbodyne Systems, Inc.|Turbocharging system with integral assisting electric motor and cooling system therefor|
US6305169B1|1999-02-22|2001-10-23|Ralph P. Mallof|Motor assisted turbocharger|
DE10040122A1|2000-08-17|2002-02-28|Daimler Chrysler Ag|Abgasturbolader für eine Brennkraftmaschine|
US6418723B1|2000-09-21|2002-07-16|Caterpillar Inc.|Low pressure gaseous fuel system|
DE10216447C1|2002-04-12|2003-09-18|Forschungszentrum Juelich Gmbh|turbocharger|
DE102005056797A1|2005-11-29|2007-05-31|Man Diesel Se|Zweistufiges Aufladungssystem|CN102312723A|2011-09-23|2012-01-11|优华劳斯汽车系统(上海)有限公司|涡轮增压机|
DE102012204403A1|2012-03-20|2013-09-26|Man Diesel & Turbo Se|Radialverdichtereinheit|
US9003793B2|2013-05-31|2015-04-14|GM Global Technology Operations LLC|Turbocharger assembly with compressed air cooled bearings|
JP5894203B2|2014-03-04|2016-03-23|三菱重工業株式会社|過給機の製造方法|
DE102015203596A1|2015-02-27|2016-09-01|Robert Bosch Gmbh|Lader, insbesondere Abgasturbolader, für eine Antriebseinrichtung sowie entsprechende Antriebseinrichtung|
JP6563321B2|2015-12-03|2019-08-21|三菱重工業株式会社|電動機支持機構、圧縮機、および過給機|
US20170335756A1|2016-05-22|2017-11-23|Honeywell International Inc.|Turbocharger with two-stage series compressor driven by exhaust gas-driven turbine and electric motor|
法律状态:
2011-09-14| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110913 |
2012-07-06| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120706 |
2012-07-11| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120710 |
2012-10-10| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121009 |
2013-03-21| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130319 |
2013-06-15| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130614 |
2013-10-31| TRDD| Decision of grant or rejection written|
2013-11-13| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
2013-12-05| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131126 |
2013-12-06| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5425097 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2016-12-06| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2017-12-05| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2018-12-04| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-12-03| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-11-26| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-12-03| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]